A growing pile of evidence indicates that the tens of trillions of microbes that normally live in our intestines — the so-called gut microbiome — have far-reaching effects on how our bodies function. Members of this microbial community produce vitamins, help us digest food, prevent the overgrowth of harmful bacteria and regulate the immune system, among other benefits. Now, a new study suggests that the gut microbiome also plays a key role in the health of our brains, according to researchers from Washington University School of Medicine in St. Louis.

The study, in mice, found that gut bacteria — partly by producing compounds such as short chain fatty acids — affect the behavior of immune cells throughout the body, including ones in the brain that can damage brain tissue and exacerbate neurodegeneration in conditions such as Alzheimer’s disease. The findings, published Jan. 13 in the journal Science, open up the possibility of reshaping the gut microbiome as a way to prevent or treat neurodegeneration.
“We gave young mice antibiotics for just a week, and we saw a permanent change in their gut microbiomes, their immune responses, and how much neurodegeneration related to a protein called tau they experienced with age,” said senior author David M. Holtzman, MD, the Barbara Burton and Reuben M. Morriss III Distinguished Professor of Neurology. “What’s exciting is that manipulating the gut microbiome could be a way to have an effect on the brain without putting anything directly into the brain.”
Evidence is accumulating that the gut microbiomes in people with Alzheimer’s disease can differ from those of healthy people. But it isn’t clear whether these differences are the cause or the result of the disease — or both — and what effect altering the microbiome might have on the course of the disease.