As our bodies and minds continue to adjust to the recent time change, debates continue around society about whether to make daylight saving time a permanent fixture, eliminate it or stay with the current semi-annual clock adjustment.
As those discussions continue, scientists at the University of California San Diego and their colleagues have made progress in understanding the circadian clock, the 24-hour cycle that synchronizes with light-dark exposure, and how it functions (scientists in circadian and sleep research recommend permanent standard time as the healthiest option when considering light and dark exposure).

Internal biological clocks exist throughout the tree of life, rhythmically influencing daily activities and behavior. Two years ago a multi-institutional team of researchers assembled a circadian clock in a test tube for the first time to probe the components of the clock’s rhythms and interactions.
The “In Vitro Clock” helped the researchers analyze how the components of the clock interact in different times of the daily circadian cycle to control gene expression.
A new study led by UC San Diego and UC Merced researchers has expanded on this foundation with the development of a method to study how the circadian clock synchronizes with the environment in real time. As described in the journal Proceedings of the National Academy of Sciences, real-time capability allowed them to explore deeper into the clock’s previously unknown internal functions, including how time-setting signals are transmitted from its core—known as the oscillator—to the expression of genes that ensure a properly functioning clock.