Dynamic mental illness indicators caught by advanced AI in brain imaging

New research by Georgia State University’s TReNDS Center may lead to early diagnosis of devastating conditions such as Alzheimer’s disease, schizophrenia and autism—in time to help prevent and more easily treat these disorders. In a new study published in Scientific Reports a team of seven scientists from Georgia State built a sophisticated computer program that was able to comb through massive amounts of brain imaging data and discover novel patterns linked to mental health conditions. The brain imaging data came from scans using functional magnetic resonance imaging (fMRI), which measures dynamic brain activity by detecting tiny changes in blood flow.

Photo by MART PRODUCTION on Pexels.com

“We built artificial intelligence models to interpret the large amounts of information from fMRI,” said Sergey Plis, associate professor of computer science and neuroscience at Georgia State, and lead author on the study.

He compared this kind of dynamic imaging to a movie—as opposed to a snapshot such as an x-ray or, the more common structural MRI—and noted “the available data is so much larger, so much richer than a blood test or a regular MRI. But that’s the challenge—that huge amount of data is hard to interpret.”

Leave a comment

Filed under aging brain, brain, brain damage

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s