Researchers led by a team from the University of Massachusetts Amherst recently announced a major theoretical and experimental breakthrough that allows scientists to predict, with an unprecedented precision, when a soft material will crack and fail. The findings, published in the Proceedings of the National Academy of Sciences, have immediate implications for the engineering and manufacture of a wide range of polymers. They also provide insights into how natural soft materials—such as the connective tissues in our bodies and even our brains—break down.

It has proved devilishly complex to predict when a soft material, such as a gel or elastomer, will crack and fail. “It’s been a mystery,” says Alfred Crosby, professor of polymer science and engineering at UMass Amherst and one of the paper’s senior authors. Because scientists haven’t been able to accurately predict when a soft material will fail, designers typically over-engineer their products and recommend replacing them earlier rather than later, just to be safe. “But if we could predict exactly when a product would fail, and under what conditions,” says Crosby, “we could engineer materials in the most efficient way to meet those conditions.”