DARPA Funds Brain-Stimulation Research to Speed Learning

The Defense Advanced Research Projects Agency  (DARPA) is working with seven U.S. universities and elements of the Air Force and Army on research that seeks to stimulate the brain in a non-invasive way to speed up learning.

DARPA announced the Targeted Neuroplasticity Training, or TNT, program last March, and work now has begun on the effort to discover the safest and most effective ways to activate a natural process called “synaptic plasticity.”


Plasticity is the brain’s ability to strengthen or weaken its neural connections to adapt to changes in the environment. For TNT Program Manager Dr. Doug Weber, such plasticity is about learning.

“We’re talking about neural plasticity, or how the neurons, which are the working units in the brain, how their function changes over time as we train on new skills,” he said during a recent interview with Department of Defense News.

Targeted Neuroplasticity Training

TNT research focuses on a specific kind of learning called cognitive skills training. People use cognitive skills to do things like pay attention, process information, do several things at once, detect and understand patterns, remember instructions, organize information and much more.

TNT researchers will try to identify physiological mechanisms that might allow them to enhance natural learning by electrically stimulating peripheral nerves — those that connect neurons in the brain and spinal cord to organs, skin and muscles — to make the brain more adaptive during key points in the learning process, according to a DARPA announcement about TNT.

“The mechanisms underlying this enhancement are not well understood,” Weber said, “but we believe that neurostimulation boosts the release of neurotransmitters such as acetylcholine, norepinephrine and others that play a role in modulating cognitive processes related to learning.”

There’s probably no single “silver bullet,” he added, “but rather there are multiple processes involved. Thus, a primary goal of TNT is to tease apart the various mechanisms to understand the links between neurostimulation, neurotransmitter release, and resulting changes in plasticity.”

To activate the peripheral nerves, researchers will compare non-invasive electrical stimulation through the skin with an invasive form of stimulation — using an implanted device — to see which is more effective.

But Weber envisions a device that can promote plasticity by using electricity to stimulate peripheral nerves through the skin, DARPA says.

The program is starting with the basic science of brain plasticity and will conclude, if the research is successful, with human trials in healthy volunteers.

Understanding Plasticity

In TNT’s first half, researchers will work on determining neural mechanisms that underlie how nerve stimulation influences brain plasticity. They’ll also try to discover physiological indicators that show stimulation is working, and identify and minimize the side effects, if any, of nerve stimulation, DARPA says.

In the program’s second half, researchers will use neurostimulation technology in different kinds of training exercises to measure improvements in the rate and extent of learning.

At the same time, some of the research teams will work with military intelligence analysts and foreign language specialists to understand how they now train, so the TNT platform can be fine-tuned to meet their needs.

Through partnerships with the Air Force Research Laboratory, the U.S. Air Force’s 711th Human Performance Wing and the Army Research Institute of Environmental Medicine, for example, a research team at Arizona State University in Tempe will evaluate TNT stimulation with two groups of volunteers — one studying intelligence, surveillance and reconnaissance, and another practicing marksmanship and decision-making, DARPA says.

Weber said the TNT program has worked from the beginning with researchers from the University of Maryland Center for the Advanced Studies of Language, a DoD university-affiliated research center.

“We’ve tried to learn from them … the approaches they take [and] the factors they consider when they’re designing and refining training protocols,” he added.

National Security Missions

DARPA is approaching the study of synaptic plasticity from several angles to determine whether there are safe and responsible ways to enhance learning and accelerate training for skills relevant to national security missions, Weber said, adding that the TNT program will help make up for dwindling numbers of personnel in each military service.

“The force is already small or shrinking, and we have all these different jobs that need to be performed and fewer people to do them,” he said. “All of these jobs are mission critical in their own right, so having a force that is more adaptive to meet those ever-changing challenges is going to be absolutely critical.”

Weber noted that many kinds of devices on the market now are designed to stimulate the brain and peripheral nerves.

“You can go online right now and for $50 buy a device that claims to stimulate your brain to do all sorts of things,” he said.

Such companies, he said, “make the technology available without any assurance that it’s safe or even effective. So I think [TNT is] doing a much nobler service by focusing on the underlying science so we know something about the capability we’re creating.”

In the meantime, we know for a fact that cardiovascular exercise sends oxygen to the brain and creates new neurotransmitters. To read more on this check out my Page – Important facts about your brain (and exercise benefits).


Leave a comment

Filed under aging brain, brain, brain function, brain health, exercise and brain health, Healthy brain

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s